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A perspective on the issue of scale in the fracture and deformation properties of
ordinarily brittle covalent–ionic solids (ceramics) is presented. Characteristic
scaling dimensions for nanomechanical properties of this class of solids are
identified—specimen size or layer thickness, microstructural scale, and contact
dimension. Transitions in mechanical damage processes occur as the characteristic
dimensions diminish from the macroscale to the submicroscale. Such transitions
generally preclude unconditional extrapolations of macroscopic-scale fracture and
deformation laws into the nanomechanics region. Strength of brittle solids tends
to increase while toughness tends to decrease as the scaling dimensions diminish.
The nature of flaws that control strength in the submicroscale region also undergoes
fundamental changes—even flaws without well-developed microcracks can be
deleterious to strength.

I. INTRODUCTION

Materials technology is witnessing an ever-continuing
miniaturization in microelectromechanical systems
(MEMS) and nanoelectromechanical systems (NEMS),
computer chips, sensors and actuators, microfluidics and
bioengineering devices, and so on. Figure 1, a polysilicon
MEMS device fabricated at the Sandia National Labora-
tories, is an illustrative example—characteristic dimen-
sions of individual components, of component/
component contacts, and of the underlying grain
microstructures all lie in the submicrometer range. Ques-
tions inevitably arise as to how valid it is to extrapolate
our knowledge base downward from the large scale as
such characteristic dimensions diminish. We might ex-
pect to find fundamental differences between con-
ventional responses at the macroscale (governed by
continuum laws), microscale (governed by discrete de-
fects—dislocations, microstructural interfaces, micro-
cracks), and nanoscale (governed by interatomic force
laws). Feynman, in his celebrated 1959 lecture “There Is
Plenty of Room at the Bottom,” pointed out that proper-
ties will inevitably change on approaching the nanoscale,
not just because of quantum effects but also from a shift-
ing balance between competing classical forces as the
surface/volume ratio increases. In this view, intrinsic size
effects may be expected to constitute the rule rather than
the exception in materials properties.

Size effects are no less true of mechanical properties.
The mechanical properties of materials is a well-
established field of study at the macroscale level. But

how valid are the conventional laws of fracture and de-
formation at the nanoscale—the realm of nanomechan-
ics? How does diminishing separation between bound-
aries (external surfaces, internal grain or interlayer inter-
faces) increasingly constrain deformation and fracture
processes? Are there fundamental transitions in underly-
ing mechanisms en route between scaling limits? For
instance, metals tend to become more brittle as grain or
interlayer size diminishes.1 This is attributable at least in
part to an increasing hardness with diminishing grain
size—Hall–Petch behavior2—as dislocation activity be-
comes progressively impeded at internal boundaries.
There is also some suggestion of a reverse transition to
softening at ultrasmall grain sizes, possibly associated
with the proliferation of boundary-related slip sources.
Fracture strength in ceramics shows an analogous in-
crease with diminishing grain size.3 In this material class
too there are some suggestions of strengthening proc-
esses at the nanoscale (e.g., in ceramic nanocomposites
from intrinsic toughening mechanisms associated with
nanoparticulates), augmented by internal residual
stresses.4 In devices, especially systems with moving
parts, material components are subject to small-scale
contacts during fabrication, handling, or operation (e.g.,
Fig. 1). Even though the contact forces are typically
small, they are highly concentrated, so attendant stresses
may be sufficiently intense to introduce highly localized
but deleterious damage that can cause premature failure.5

What is the nature of such damage as we enter the small-
scale contact region, and how does it impact strength
properties?
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Thus, there are many questions that need to be ad-
dressed in the interest of ensuring reliability and perfor-
mance of next-generation small-scale devices. In this pa-
per we present a perspective on this topic, with a focus on
mechanical properties of inherently brittle solids charac-
terized by covalent/ionic bonding (i.e., ceramics and
glasses). In such solids, the principal material property of
interest in the nanoscale region is strength or some analo-
gous critical fracture load. We will argue that these prop-
erties do indeed undergo fundamental transitions as scal-
ing dimensions diminish, so that simple extrapolations
into the nanoscale are not generally valid. Specific con-
sideration will be given to three scaling variables: speci-
men size or layer thickness, microstructural scale, and
contact dimension. Contact testing will be used as
a simple test probe to quantify essential mechanical
responses.

II. SPECIMEN SIZE

A. Monoliths—nature of flaws

As indicated above, materials components in devices
are becoming ever smaller, with at least one dimension in
the submicrometer region. These components are usually
monocrystalline or fine-grain polycrystalline, sometimes
glassy, with near-pristine surfaces. The first strength tests
on brittle materials with such characteristics were made
by Griffith in 1920 on freshly drawn glass fibers. Grif-
fith’s tests demonstrated that strengths well above 1 GPa,
approaching the theoretical limit E/10 (E � Young’s

modulus), were possible on pristine surfaces, but de-
graded steadily with aging and handling due to the incu-
bation of submicroscopic flaws.6 The flaw size cf relates
to strength S according to the Griffith relation

S = T��cf
1�2 , (1)

where T is toughness and � is a flaw geometry constant.
Subsequent development of ultra-high-strength (>1 GPa)
silica glass fibers with polymer coatings to prevent the
inception of large flaws from the action of external
agents has successfully been exploited by the optical fi-
ber communications industry.

More recently, strength tests have been conducted on
MEMS and semiconductor materials, principally poly-
crystalline or single-crystal silicon, fashioned in the form
of rods, bars, or plates by photolithography or compa-
rable fabrication technology.7,8 Such tests are simple in
concept, although they can be experimentally demanding
and costly. Generally, S increases into the GPa range as
the limiting specimen dimensions diminish into the sub-
micrometer region. An illustrative data set from some
work by Namazu et al.7 on single-crystal silicon rods
with diameters ranging from millimeters down to nanom-
eters and loaded in flexure using an atomic force micros-
copy tip is shown in Fig. 2. Interestingly, not only does
the mean strength increase in the nanoregion, but so does
the Weibull modulus. The flaw size in the silicon can be
calculated by inserting T ∼1 MPa·m1/2 and � ∼1 into
Eq. (1), yielding cf ∼1 �m at S ∼1 GPa.

The data trends in Fig. 2 are typical of specimen min-
iaturization and raise issues concerning flaw populations.
Why are the flaws actually smaller in small-scale speci-
mens? Is it just a matter of eliminating flaws in a large

FIG. 1. Micrograph of MEMS device. Characteristic dimensions of
component parts, internal grain structure, and intercomponent contact
all lie in the submicrometer region. How well do conventional laws of
mechanics apply at these and small dimensions? Width of field about
200 �m. Reproduced from the Sandia National Laboratories Web
page.

FIG. 2. Weibull strengths of silicon test specimens for bars of differ-
ent characteristic mean cross-section widths w as indicated (�m).
Mean strength and Weibull modulus increase with diminishing speci-
men size. Data reproduced from Ref. 7.
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statistical distribution as the surface area diminishes?
What is the fundamental nature of the flaws? How do
they evolve, and are they truly crack-like as in large-scale
specimens? There is a need to understand flaw mechan-
ics more fully in the small-scale region.

We will return to the issue of the nature of small-scale
flaws in Sec. IV.

B. Coatings and films—layer thickness

Analogous size effects are associated with diminishing
layer thicknesses in coating and film structures. In metal
coatings and multilayers, hardness increases with de-
creasing layer thickness as slip processes become more
constrained.9–11 Here we focus on brittle layers on com-
pliant (polymer) or soft (metal) substrates. Such systems
are relevant to certain natural structures—shells, teeth,
and bone—as well as to engineering structures—wear-
resistant coatings, laminated windows, and eye-
glasses.12–14 Whereas considerable effort is now being
directed by the nanotechnology community toward the
failure of ultrathin brittle films, links between mechanics
and mechanisms at the macroscale and nanoscale remain
obscure.

Consider the axisymmetric bilayer system in Fig. 3,
consisting of a brittle layer of thickness d on a thick
compliant substrate, with a contact force P acting over a
radius a at the top surface. The assumption of a fixed
(nonzero) contact area ensures elastic deformation up to
a critical load for fracture (“blunt” contact15), thereby
simplifying the analysis. Three regions of relative thick-
ness d/a are identified in Fig. 3.

(I) Thick coatings. The system behaves as a brittle
monolith, with the stresses concentrated at the top sur-
face. Fracture occurs as a near-axisymmetric cone crack
close to the contact circle, where the tensile stresses are
a maximum.14

(II) Thin coatings. The coating begins to flex, and the
primary maximum in tensile stress shifts to the coating
lower surface.16 Radial cracks initiate in the center re-
gion and propagate on median planes through the contact

axis. At the top surface, the peak tensile stress moves
outward from the contact circle onto the shoulders, form-
ing relatively shallow, secondary ring cracks.

(III) Thin films. Cracking becomes suppressed within
the compression zone beneath the Hertzian contact, and
the maximum tensile stresses shift back to the top surface
close to the contact circle.16–18 Membrane stresses come
increasingly into play. Overloading in any of these re-
gions produces multiple cracking, including punch-in
shear failures and delamination, especially when plastic-
ity is induced in either the substrate or coating.16,17,19,20

Fracture mechanics descriptions of each of these
modes can be complex.14 However, conservative rela-
tions can be obtained by considering fracture to occur
when the maximum tensile Hertzian stresses (region I),
flexural stresses (region II) or thin film stresses (region
III) equal the bulk strength S. This yields critical loads
for surface cone cracks and subsurface radial cracks

PC = ASa2, �region I� (2a)
PR = BSd2�log�CE�Es�, �region II� (2b)
PC = ASa2Es�E, �region III� , (2c)

where E and Es are Young’s modulus of brittle layer and
substrate and A, B, and C are dimensionless coeffi-
cients.21 Equations (2a) and (2c) are obtained from the
relation for the maximum tensile stress at the contact
circle (the latter with due allowance for an infinitesimally
thin layer on a semi-infinite substrate), and Eq. (2b) from
the theory for elastic plates on a compliant substrate.14 A
plot of PR/Sa2 versus d/a calculated from Eq. (2) is
shown as the solid lines in Fig. 4 for E/Es � 30 (glass/
polycarbonate). Points are corresponding data from finite
element analysis (FEA) calculations for surface cone or
ring cracking and radial cracking. The lower of these two
data sets represents first cracking conditions, with
the crossover points delineating regions I, II, and III in
Fig. 3. In general, the FEA data lie somewhat above the
simplistic predictions from Eq. (2), owing to the assump-
tion of pure Hertzian contact in Eqs. (2a) and (2c)

FIG. 3. Schematic of bilayer structure consisting of outer brittle layer of thickness d on thick compliant substrate, in axisymmetric contact on top
surface at load P over a circular area of radius a (not shown). Showing fracture mode transitions in brittle layer: (I) cone crack at top surface (thick
coatings), (II) ring crack at top surface and radial crack at bottom surface (thin coatings), and (III) concentric through-thickness ring cracks (thin
films).
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(neglecting flexure contributions) and the assumption of
a nonzero contact area in Eq. (2b) (C dependent on
d/a).22 Actual experimental data may lie even higher on
such plots, from additional constraining effects of stress
gradients23,24 and flaw statistics.25 Notwithstanding such
deviations, Eq. (2) remains a useful lower bound to actual
behavior of brittle layer systems in concentrated loading.

These results demonstrate that size effects may be ren-
dered as transitions in fracture mechanisms with dimin-
ishing relative coating thickness d/a. We have illustrated
with just one loading system, but such transitions may be
expected to be the rule rather than the exception. Down-
ward extrapolations are therefore not generally viable.
Again, the need to focus more on the region of ultrathin

films, where yet more mechanisms may kick in, is
manifest.

III. MICROSTRUCTURAL SCALE

Another scale that has a profound effect on strength
properties is grain size (or other characteristic micro-
structural dimension). Generally, the stresses needed to
induce fracture (or yield) increase with an approximate
(grain size)–1/2 dependence (Hall–Petch). The refinement
of polycrystalline ceramic (and metal) structures into the
nanoregion has been a strong driving force in the quest
for ultra-high-strength materials.4 The simplistic picture
is one of reducing the scale of the grain-localized flaws
inherently associated with weak interfaces (grain bound-
aries, twins, and so forth) in the microstructure.5 How-
ever, not all properties may benefit from microstructural
refinement, so due caution needs to be exercised in ma-
terials design.

This last point can be demonstrated by examining the
indentation response of polycrystalline ceramics as a
function of microstructural scale. The example in Fig. 5
is for sphere indentations on the surfaces of a micaceous
glass-ceramic (MGC) at two microstructural scales:26–28

(a) fine microstructure (grain size l ≈ 1 �m), showing a
tensile cone crack (“brittle” response); and (b) coarse
microstructure (l ≈ 10 �m), showing a diffuse zone of
closed shear microcracks (“quasiplastic” response). In-
creasing grain size introduces larger microcrack flaws by
promoting frictional sliding at the weak mica/glass-
matrix interfaces.29,30 It also toughens the material by
inhibiting the growth of well-defined single cracks.26

Such microstructure-controlled brittle–plastic transitions
are observed to a greater or lesser degree in all polycrys-
talline ceramics.31

Thus, for any given ceramic, strength and toughness
tend to have an inverse relationship.5,31 Considering

FIG. 4. Plot of normalized critical load P/Sa2 versus d/a for coating/
substrate modulus E/Es � 30 (glass/polycarbonate). Solid lines are
calculated from Eq. (2). Data points are FEA computations: surface
ring cracks (unfilled symbols), cone cracks (partially filled symbols),
and subsurface radial cracks (filled symbols). Regions I–III as indi-
cated in Fig. 3. Data courtesy H. Chai.

FIG. 5. Hertzian indentation damage in (a) fine-grain and (b) coarse-grain micaceous glass-ceramic, from WC sphere (r � 1.98 mm, P � 1000 N).
Half-surface and side view of bonded-interface specimen, surfaces gold-coated after indentation, optical micrographs (Nomarski illumination).
Reproduced from Ref. 26.
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toughness first, ceramics generally exhibit R-curve be-
havior with enhancement of long-crack toughness T�

relative to short-crack toughness T0 at larger grain
sizes.31 Whereas T0 is governed by intrinsic grain bound-
ary or interface energies, T� is augmented by dissipative
crack-tip shielding processes, such as bridging by fric-
tional grain pullout.32 It is usually T� that is measured (as
KIC) in conventional fracture specimens. Data for T� as a
function of grain size l are shown in Fig. 6 for the MGC
ceramic in Fig. 5, obtained using a single-edge-
precracked-beam technique.33 These data may be repre-
sented by T�(l) � T0[1 + (l/L)1/2], with L a characteristic
grain-bridging dimension inversely dependent on
Young’s modulus and grain-sliding friction coefficient.
A general conclusion that may be drawn from such data
is that microstructural refinement will tend to diminish
any toughening process.

Consider now the strength properties of the same
glass-ceramic material. Data for surfaces in their as-
polished state (filled symbols) and after predamage from
spherical indenters at a prescribed load P � 700 N (un-
filled symbols) are plotted in Fig. 7. These data were
measured on bars in four-point bending, with the inden-
tation sites in the predamaged specimens on the tensile
side.28 Taking the as-polished specimens first, S in-
creases monotonically with decreasing l as expected. For
this case, it can be supposed that the scale of the critical
closed microcrack flaws is determined by the intrinsic
grain size in the short-crack region; so that, inserting T �
T0 and c � l into Eq. (1), we have

S = �T0�l1�2, �as-polished� . (3a)
Equation (3a) is plotted as the monotonically decreas-

ing curve. Hall–Petch is obeyed, within the data scatter,

over the grain size range covered. In the case of prein-
dented surfaces, on the other hand, the strength data show
a maximum at some intermediate grain size l*. At l > l*,
the quasiplasticity mode prevails [Fig. 5(b)]—the closed
microcracks extend incrementally at their ends as “wing
cracks,”34,35 and S is only slightly diminished. Thus,
Eq. (3a) remains an approximate upper bound. At l < l*,
the brittle mode prevails [Fig. 5(a)]—inserting T � T�(l)
from above and c � (�P/T�)2/3 for cone cracks (� an-
other crack-geometry coefficient)31,36 into Eq. (1), we
obtain

S = S0�1 + �l�L�1�2�4�3, (as-indented) , (3b)

where S0 ∼ T0
4/3/P1/3 is a lower strength limit at l � 0 (in

this case for the base glass used to form the glass-
ceramic). This equation is represented as the monotoni-
cally increasing curve in the figure. Thus again, a size-
dependent brittle–plastic transition is evident.

Some general conclusions for polycrystalline ceramics
may be drawn from the results in Fig. 7. Increasing the
indentation preload P will lower both S(l) curves in
Eq. (3), but especially that in the brittle region of
Eq. (3b), and thereby move the crossover point l* to
larger grain sizes. Such trends will be exacerbated by the
use of sharper (e.g., Vickers) indenters. The region l > l*
is the damage-tolerant domain of structural ceramics,37

where dissipative processes operate and the main design
requirement is the attainment of high toughness to con-
tain long cracks. In this domain, ceramics are susceptible
to gross wear from microcrack coalescence38 and cyclic
fatigue from loss of crack-tip shielding.39,40 The region
l < l* is the more pertinent domain of advanced ceramics,

FIG. 6. Toughness as a function of square-root grain size for a mica-
ceous glass-ceramic. Point on left axis represents base glass from
which the glass-ceramic is processed. Data reproduced from Ref. 33.

FIG. 7. Strength as a function of grain size for MGC materials. Filled
symbols are breaks for specimens with polished surfaces; unfilled
symbols from preindented surfaces (WC indenter, r � 3.18 mm and
P � 750 N). Solid lines are asymptotic limits from Eq. (3). Grain size
l* delineates plastic–brittle response regions. Reproduced from
Ref. 28.

B.R. Lawn: Fracture and deformation in brittle solids

J. Mater. Res., Vol. 19, No. 1, Jan 200426



where high strengths are attainable but damage tolerance
is low. This is the domain of brittle fine-grain polycrys-
tals and nanocomposites, where the principal goal is to
avoid the incidence of any large flaws to maintain high
strength levels (crack prevention). Some proponents of
ceramic nanocomposites4 argue that it should be possible
to increase strength and toughness simultaneously by de-
signing structures with rapidly rising R-curves over very
small crack extensions, effectively diminishing l* into
the submicrometer region. Others41 have argued that any
such toughening is likely to be inconsequential, over and
above the rule of mixtures; so that the main role of fine
particulate additives in nanocomposites is to produce fine
microstructures by inhibiting grain growth, thereby en-
hancing strength at the expense of toughness.

IV. CONTACT DIMENSION

Moving parts in devices are susceptible to damage
from contacts, compromising performance and lifetime.
Miniaturization of the devices commensurately reduces
the size of such contacts (e.g., Fig. 1), concentrating the
stresses and thereby increasing the potential for irrevers-
ible damage at ever-lower critical loads. For blunt
(Hertzian) indentations, there exists a well-documented
threshold sphere radius below which cracking is sup-
pressed:23,42 above the threshold, cone cracks dominate;
below the threshold, plasticity dominates. An analogous
cracking threshold is observed for sharp (Vickers) inden-
tations, in this case below a critical contact or penetration
dimension.43 Such thresholds are attributable to increas-
ingly severe stress gradients within the ever-confining
contact fields, most markedly in the tensile stresses, mak-
ing it relatively difficult to initiate cracks.44 Once more,
a size-dependent brittle–plastic transition is manifest, this
time as an indentation scaling effect.

In this section, we consider a worst-case situation, that
of contacts from sharp (Vickers/Berkovich) indenters on
ordinarily brittle materials with single-valued toughness

T0—monolithic glasses, single-crystal ceramics, and
nanoscale polycrystalline ceramics. Sharp contacts can
introduce damage in otherwise pristine surfaces at very
low (∼mN) loads. In pristine glass fibers, for instance, a
single contact from a micrometer-scale dust particle can
degrade strength by over an order of magnitude. At sharp
contacts, cracking is invariably preceded by local “plas-
ticity” within the hardness zone. The plasticity takes the
form of punched-in discrete slip events, so-called shear
faults,45 at relatively high stress levels (H/E > 0.1).46

These faults provide the embryonic flaws for initiation
of corner radial cracks. An example of hardness-zone
shear faults and ensuing radial cracks is shown in Fig. 8
for soda-lime glass.47,48 A characteristic of sharp con-
tacts is that they generate their own flaws, even in ini-
tially defect-free materials (e.g., dislocation-free sili-
con), so that contact history totally controls the strength
properties.

The threshold condition for sharp indenters can be
determined from basic relations for the deformation and
fracture dimensions:44 for deformation, impression di-
agonal a � (P/2H)1/2, where H is indentation hardness;
for fracture, radial crack length c � (�P/T0)2/3, where
� � �(E/H)1/2(cot �)2/3 is an elastic–plastic geometry
coefficient36 (� � indenter half-angle). Because c varies
more strongly than does a with load P, there is a critical
dimension a* � c* below which the radial crack is sub-
sumed within the hardness zone:

a* = �T0�2�H�2 . (4)
Above a* fracture dominates, and below a* plasticity
dominates. Estimates of a* range between 0.1 and 10 �m
for typical brittle solids and Vickers indentations.5

Now consider the strength of initially pristine materi-
als with surfaces containing sharp indentations. In the
post-threshold cracking region, strength S in Eq. (1) is
governed by radial crack size c ∼ (P/T0)2/3 ∼ (Ha2/T0)2/3,

S ∼ T0
4�3�H1�3a2�3, �a � a*� . (5a)

FIG. 8. Micrographs of Vickers indentations in soda-lime glass. (a) As-indented surface, viewed in transmitted polarized light in crossed polars.
Radial cracks emanate from impression corners, driven by residual stresses associated with plastic zone. (b) Indented surface after etching—
discrete shear faults within hardness impression act as sources for the radial cracks. Below threshold impression size, radial cracks are suppressed.
Reproduced from Refs. 47 and 48.
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In the subthreshold plasticity region, strength is governed
by the impression (shear fault) size a,

S ∼ T0�a1�2, �a � a*� . (5b)

Data for strength S for optical glass fibers containing
Vickers flaws are plotted as a function of impression size
a in Fig. 9.49 The values of S either side of the threshold
differ not only in magnitude, but also in the S–a expo-
nent. Particularly noteworthy is the continual increase in
S with diminishing a in the subthreshold region, attesting
to the capacity of even submicroscopic flaws to degrade
strength. Clearly, simple extrapolation of the conven-
tional fracture mechanics into the submicrometer region
is invalid.

Controlled indentation experiments of the kind de-
scribed here provide some insights into the nature of
contact-induced damage that may be incurred by device
components in service. A schematic representation of a
model derived from several studies of indentation dam-
age in brittle solids is shown in Fig. 10.45,50–52 In hard
ceramics, dislocation motion is inhibited by very high

Peirels stresses, approaching the intrinsic cohesive
strength of the structure (∼G/5; G � shear modulus).53

As the indenter begins to contact a specimen surface, the
elastic stresses build up rapidly until the cohesive
strength of the solid is exceeded. At that point a shear
fault, akin to a shear crack with friction at the sliding
interface, abruptly propagates into the subsurface, some-
what relaxing the contact pressure as it does so. As the
indenter continues to penetrate, the stresses build up
again, and the process repeats itself. Hence, the inherent
discreteness in the fault patterns noted in Fig. 8(b). In
isotropic materials such as glasses or fine-grain polycrys-
tals, the fault surfaces follow curved shear stress trajec-
tories; in single crystals, the faults follow more along
weak crystallographic planes. A distinguishing feature of
the fault patterns in ceramics (in contrast to metals) is
their strong localization around the indentation site. In-
tersection lines between fault surfaces provide high stress
concentration sites for initiation of ensuing radial cracks.
Processes of this kind have recently been dramatically
revealed beneath nanoindentations in semiconductor
crystals using the transmission electron microscope.54,55

More detailed experiments using the latest generation
of high-resolution microscope facilities to examine con-
tact processes, particularly using in situ testing stages,56

should provide further insight into flaw generation proc-
esses. Other deleterious processes such as adhesion, fric-
tion (stiction), wear, and fatigue at the contact interface
are likely to show analogous transitional behavior on
entering the nanoscale.

V. CONCLUSIONS

(1) Characteristic scaling dimensions for nanome-
chanical properties of covalent–ionic solids (ceramics)
have been identified. These include specimen size or
layer thickness, microstructural scale, and contact dimen-
sion.

(2) Transitions in mechanical damage processes as
characteristic dimensions diminish have been described.
These include brittle–plastic transitions. Such transitions
preclude unconditional extrapolation from macroscale
properties into the nanoscale.

(3) Generally, strength increases and toughness de-
creases as the characteristic scaling dimensions in (1)
diminish.

(4) The nature of flaws that control strength properties
of brittle solids changes in the nanoscale region. Even
flaws without well-developed cracks can be deleterious
to strength.
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